
RD-AI61 236 NAVY MILITARY STANDARDS FOR TECHNICAL SOFTNAEE v/1
DOCUMENTATION OF EMBEDDED TACTICAL SYSTEMS, A CRITICAL
REYIEW(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA N

UNCLASSIFIED H C LYON SEP 85 F/0 9/4 M

r

111111(1 46 * 2 2.
L 136 III

1111111112.0

1~II.8
11111.25 -1114 111

MICROCOPY RESOLUTION TEST CHART
NATIONAL. OLPEA0OF STANOARDS-963 -

. ..

NAVAL POSTGRADUATE SCHOOL
Monterey, California

N

CoF

I-

THESIS ll
NAVY MILITARY STANDARDS FOR

TECHNICAL SOFTWARE DOCUMENTATION OF
EMBEDDED TACTICAL SYSTEMS;

A CRITICAL REVIEW

0 - by

CHarvey Channing Lyon

September 1985

Thesis Advisor: Gordon H. Bradley

. Co-advisor: Carl R. Jones

Approved for public release; distribution unlimited

.o

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Ifte Dae IEnere_

REPOT DOUMENATIO PAG READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. ftCIPIENT*S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Navy Military Standards for Master's Thesis
Technical Software Documentation of September 1985
Embedded Tactical Systems; 6. PERFORMING ORG. REPORT NUMBER

A Critical Review .
7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(#)

Harvey Channing Lyon
9. PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AftEA & WORK UNIT NUMUIERS

Naval Postgraduate
School

Monterey, CA 93943-5100

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School September 1985
Monterey, CA 93943-5100 6. NUMBER OF PAGES65

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlllng Office) IS. SECURITY CLASS. (of this report)

ISO. OECLASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abotract entered In Block 20, If different frou Report)

ISI. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revetse etde if neceeeery nd Identify by block number)

Software Documentation
Documentation
DOD-STD-1679A (Navy)

* Software Life-cycle

'20. ABSTRACT (Continue on r..erev o * It .*cI*ne..,ry and Identify by block number)

This thesis critically reviews the Navy's embedded

tactical software development methodology as defined in

DOD-STD-1679A(Navy). The emphasis of the thesis is on the
documentation produced as a result of following that
methodology. Both the development methodology, and the
documentation produced are compared to management and
content recommendations provided by the National Bureau

(continued)

* DD ,FONA, 1473 ED, TION OF INOV IIIS OSOLETI UNCLASSIFIED
N 0102- L

- 014-5601 1 SECURITY CLASSIFICATION OR TNIS PAGIE (Ihen D oet Entrero)

UNCLASSIFIED
SCCuNITV CLASSIrCATIOW OF THIS PAG9 (Ohm 018I Wl 04

-of Standards and academic/commercial publications. The
conclusion reached is that DOD-STD-1679A(Navy) is
adequate for its purpose. However problems in documentation

i* develop as a result of management's misinterpretation
of the phased life-cycle development methodology
described in DOD-STD-1679A(Navy) and the importance
of a continous documentation effort.

2 UNCLASSIFIED
SgeUrNIT CLASSIFICAIOW OF THIS PAGt(~hen Data Eanewe,)

Approved for public release; distribution is unlimited.

Navy Military Standards for
Technical Software Documentation of

Embedded Tactical Systems;
A Critical Review

by

Harvey Channinq Lyon

Lieutenant, United States Navy
B.S., United States Naval Academy, 1979

Submitted in partial fulfilment of the
requirements for the deqree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1985

Author:

Approved by:

'."Gordon H. adle esis Co-Advisor

arl R J ,Thesis Co-Advisor

-llis R. reer, Chairman of
Administra ive Sciences

K. ~~Kneale T. Mar Denf!-.Information and Poli'S sciences

" 3

ABSTRACT

This thesis critically reviews the Navy's embedded

tactical software development methodoloqy as defined in DOD-

STD-1679A(Navy). The emphasis of the thesis is on the

documentation produced as a result of followinq that

methodoloqy. Both the development methodoloqy, and the

documentation produced are compared to manaqement and

content recommendations provided by the National Bureau of

Standards and academic/commercial publications. The

conclusion reached is that DOD-STD-1679A(Navy) is adequate

for its purpose. However problems in documentation develop

as a result of manaqement's misinterpretation of the phased

life-cycle development methodoloqy described in DOD-STD-

1679A(Navy) and the importance of a continous documentation

effort.

4

..
.

TABLE OF CONTENTS

I. INTRODUCTION-- 7

II. SOFTWARE DOCUMENTATION, WHAT IS IT?------------------ 12

A. THE SOFTWARE LIFE-CYCLE--------------------------- 12

Et. DOCUMENTATION WITHIN THE SOFTWARE LIFE-CYCLE -- 19

C. TECHNICAL DOCUMENTATION GOALS-------------------- 23

Ill. NAVY TECHNICAL DOCUMENTATION------------------------- 26

A. THE NAVY TACTICAL SOFTWARE LIFE-CYCLE------------ 28

B. NAVAL TECHNICAL SOFTWARE DOCUMENTATION
REQUIREMENTS--------------------------------------- 31

IV. NAVAL DOCUMENTATION, PROBLEMS AND SOLUTIONS---------- 46

A. NAVAL DOCUMENTATION, HOW DOES IT STACK UP--------48

B. NAVAL DOCUMENTATION, THE PROBLEM AND------------- 51
AND CAUSES

C. DOCUMENTATION, A SOLUTION IN ITSELF------------- 54

V. SUMMARY OF CONCLUSIONS-------------------------------- 60

LIST OF REFERENCES--- 64

INITIAL DISTRIBUTION LIST----------------------------------- 65

SFor -

...

.

.11 1 7. .1)o

. .

ACKNOWLEDGEMENTS

-'€ I wish to thank Dr. Gordon Bradley and Dr. Carl Jones of

the Naval Postqraduate School for their direction and

assistance in writinq this thesis. Also I wish to thank Jim

Raeqan of the Naval Surface Weapons Center for his time,

instruction, and enthusiasm in discussinq the problems he

has experienced in developinq software for naval tactical

systems. Additionally I wish to thank my father for his time

spent in establishinq contacts and collectinq material for

this thesis. There were many individuals that provided their

time and insiqht for interviews without which this thesis

would not have been possible. Althouqh these individuals are

too many to name, I wish to say thank you.

6

.. .- -; -.,. . - -- --. . ,~ . , * . .w,-. - - - -_ _

7-7-7 1k -3- -W

I. INTRODUCTION

The past ten years has seen much written on the improved

methods of software development, top-down desiqn, bottom-up

testinq, modular decomposition, structured proqramminq,

stepwise refinement and other related subjects. Even more

recently, with the risinq costs of maintenance, and the

rapidly increasinq functional requirements for the software

beinq developed, the need for excellent documentation of

software projects has become apparent with many articles

addressinq this issue. The most modern software development

methodoloqies provide for this required documentation,

addressinq areas such as feasibility studies, requirements

analysis, proqram performance specifications, test

requirements, commented codes data flow diaqrams, data

dictionaries, interface specifications, and the like. A

major purpose of these methodoloqies is to allow software

developed by multiple people to stand independent of the

individual. That is, to provide a method that captures the

process used and the product produced by a qroup of

individuals in a manner such that another qroup of

individuals may understand the product produced and the

process used to produce it without requirinq further

communication with the oriqinal qroup.

7

The Navy, with its extremely automated combat and

enqineerinq systems is like any other software

producinq/consuminq firm and is one of the larqest in the

cateqory of tactical real-time systems and enqineerinq

control systems. With software development and maintenance

costs of naval tactical systems totalinq in the billions of

dollars annually, even a relatively small improvement in

software development efficiency has an immense potential for

a siqnificant reduction in the cost of a system's

development. As a consequence, the Navy has continually

updated their Military Standards for Software Development

(DOD-STD-1679A).

This thesis compares the recommended software

development methodoloqies of the commercial and academic

fields, and those recommended by the National Bureau of

Standards with those presently in use by the Navy. The main

emphasis is on the documents qenerated in these

methodoloqies and the documentation process.

In this thesis the term "software" will be used as

defined by Fairley [Ref. l:p. 6] to mean the source code and

all the associated documents and documentation that

constitute the software product. Requirements documents,

desiqn specifications, source codes test plans, quality

assurance and confiquration manaqement procedures, software

trouble reports, etc., all constitute components of the

software product and are included in the term "software".

p •3

"Documentation" will be defined as a description of the

characteristics of an entity or process recorded for the

purpose of transferrinq information about that entity or

process. For the purposes of this thesis "documentation"

will also include descriptions of intent or requirements

such as the information within a computer proqram

development plan, or a proqram requirements specification.

The term "documentation process" will refer to the

methodoloqy used to collect and explain the associated

characteristics.

The term "documentation leve'", or level of

documentation will refer to the amount of detailed

information the documentation records about the entity or

process in relation to the total amount of information that

ever was available about the entity or process. The more

information recorded in the documentation, the hiqher the

level of the documentation.

"Document" will refer to the instrument used to

transport the documentation from one individual to another,

or from one qroup of individuals to another. Documents are

produced to provide a medium with which documentation can be

transferred.

In the process of writinq this thesis, interviews were

conducted with various key individuals experienced in Navy

surface tactical embedded computer system desiqn projects.

These interviews were non-statistical in nature. The purpose

. .. 9

.

of these interviews was to provide experienced opinions and

feelinqs on problems and causes evident in past and present

development efforts. Additionally, this thesis only views

those practices in use in the Naval Sea Systems Command,

other commands within the Navy may have different

definitions and methodoloqies. This thesis is not meant to

apply to those commands.

The DDG-51 (AEGIS class destroyer) combat system desiqn

effort was used as the example software development project.

This particular project was chosen because it reflects the

efforts of an experienced desiqn team (many of the team

members were associated with the CG-47 desiqn effort), and

has adequate fundinq. Additionally, this project is

relatively new (the computer proqram development plan was

printed in January 1985) and had the opportunity to take

advantaqe of the latest software desiqn methodoloqies.

Chapter II presents suqqested documentation requirements

of the National Bureau of Standards and introduces a typical

software life-cycle. Chapter III explains the Navy's

tactical software life-cycle and the documentation

requirements of DOD-STD-1679A (Navy). Chapter IV compares

the Navy's standards with those recommended in the

commercial/academic field and attempts to offer solutions to

documentation problems expressed to be evident in Naval

tactical software development. Chapter V summarizes th

10

conclusions reached in a method that is meant to serve a

possible "tear out" summary requirement.

.~~~~~ .'** .

II. SOFTWARE DOCUMENTATION WHAT IS IT?

This section defines "software enqineerinq" as used in

this thesis and introduces the software life-cycle concept

by describinq three models sometimes used to represent

different concepts of the software life-cycle. This section

also presents some document and documentation

recommendations throuqh the use of the life-cycle models

they are associated with, and presents the qoals or

reasoninq behind the technical documentation process and the

documents produced.

A. THE SOFTWARE LIFE-CYCLE

Barry Boehm [Ref. 2:p. 163 defines software enqineerinq

as "the application of science and mathematics by which the

capabilities of computer equipment are made useful to man

via computer proqrams, procedures, and associated

documentation". Fairley [Ref. l:p. 23 defines software

enqineerinq as "the technoloqical and manaqerial discipline

concerned with systematic production and maintenance of

software products that are developed and modified on time

and within cost estimates".

Within the context of this thesis it is sufficient to

define software enQineerinQ to be the technoloQical and

manaqerial discipline concerned with the systematic

12

.. ," .- € ,-"-"- " ¢,-- " -

production and maintenance of software keepinq in mind that

software, as defined earlier, includes the source code and

all associated documents and documentation that constitute

the software product.

Experience in software enoineerinq has tauqht us that it

is extremely important at the start of every software

project to develop a model of the life-cycle of the

particular software product. As Fairley states [Ref. l:p.

373: "A life-cycle model that is understood and accepted by

all concerned parties improves project communication and

enhances project manaqeability, resource allocation, cost

control, and project quality."

The model must be developed specifically for the project

at hand, however many qeneric models are available, that

with minor modifications are usually well suited for the

software project.

Perhaps the most basic model and the most traditional is

the phased life-cycle model often described with the

waterfall chart of Fiqure 1. Introduced in the early 70'st

but conceptually existant in the mid 60's [Ref. 2:pp. 35-

38], the phased life-cycle model seqments the life cycle

into a series of successive steps or phases. Each phase

requires a well defined input, utilizes a well defined

process, and results in a well defined output that is used

as the startinq point for the subsequent phase.

D13

.

System
ieasrb.hty

va.dal,

Detailed design

Verficaton

.- System test

Ortne, a nd

Fiqure 1: Waterfall Model of the Software Life-cycle
[Ref. 2:p. 36)

The various Phases of the phased life-cycle model are:

1. System Feasibility. Definjnq a preferred concept for
the software product, and determininq its life-cycle

D feasibility and superiority to alternative concepts.

2. Software Plans and Requirements. A complete, validated
specification of the required functions, interfaces,
and performance standards for the software product.

14

3. Product Desiqn. A complete, verified specification of
the overall hardware-software architecture, control
structure, and data structure for the product, alonq
with such other necessary components such as draft
user's manuals and test plans.

4. Detailed Desiqn. A complex, verified specification of

the control structure, data structures, interface
relations, sizinq, key alqorithms, and assumptions for
each proqram component.

5. Codinq. A complete, verified set of the proqram
components.

6. Inteqration. A properly functioninq software product

composed of the software components.

7. Implementation. A fully functioninq operational
hardware-software system, includinq such objectives as
proqram and data conversions, installation and
traininq.

8. Maintenance. A fully functioninq update of the
hardware-software system. This subqoal is repeated for

each update/ modification.

An important aspect of the phased life-cycle model is

that each phase ends with verification or validation.

Validation as it is used here means to make a dedicated

effort to ensure the product of the phase is actually what

was intended to be produced at the beqinninq of the phase.

Informally, validation is "Are we buildinq the riqht

product?". Verification as it is used here refers to a

dedicated effort to ensure that the product or output of the

phase is correct for the input of the phase; Informally,

verification is "Are we buildinq the product riqht?". In a

development desiqn such as the phased life-cycle model that

relies stronqly on the output from one phase as the input to

15

• ,*.

the next phase, the determination of the correctness of the

output before it is used as input is vital to the process.

Verification and validation are planned conscientous efforts

to eliminate errors within the development process.

There are many critics of the phased life-cycle

approach. AmonQ their complaints is that the approach does

not accurately reflect the actual software development

process, that it does not reflect the interaction and

overlap between phases [Ref. l:p. 41]. Nor does the phased

life-cycle approach provide for prototypes, or enhancement

methods. Additionally, if an error is made in the early

staQes, and is missed in the oriqinal validation, the error

will not be evident until the final validation is made after

the system is implemented. The phased life-cycle approach

does not provide a means to alter a project's desiqn once

the implementation phase is reached without a very expensive

repetition of the previous phases. Consequently, if a fatal

problem is uncovered in the validation portion of the

implementation phase of the phased life-cycle approach it is

very expensive to correct.

The beauty of the phased life-cycle approach is its

simplicity. The model is easy to understand, easy to

represent, and allows for the definition of specific

milestones even if they are hard to reach in actual

pract ice.

16

..

Another software life-cycle model is the Prototype Model

shown in Fiqure 2. The model emphasizes the source of

product requests, the major qo/no-Qo decision points, and

the use of prototypes. A prototype is a model or a mockup of

the software product. In contrast to a simulation model, the

prototype model exhibits components of the actual product

althouqh normally at reduced capability or performance

standards [Ref. l:p. 49]. Prototypinq allows desiqners to

explore various technical issues and/or to allow the qradual

development of requirements and performance specifications.

4 ,

Fiqure 2: The Prototype Software Life-cycle Model [Ref.
l:p. 513

17

The approach is useful when there is not a clean set of

system requirements and the possibility of system

requirements chanqinq is hiqh. Prototypes are desiqned to

allow experimentation and chanqe without the expense of full

implementation, and to inexpensively identify the errors

normally present in the first attempt to develop a system.

Critics of the prototypinq method cite the "Let's qo

with the prototype" attitude that never develops the full

system, or the expense involved with larqer systems of

buildinq the system twice. However, when developinq a new

system from the beqinninq, some form of prototypinq is

usually desirable.

Yet another life-cycle model is the iterative

enhancement model. In this model each version is a complete

system that performs useful work. Enhancements are made to

the previous system to add new capabilities as required.

Some minor redesiqn of the previous system may occur to

correct desiqn deficiencies evident in the previous system;

however, the majority of chanqe is in the form of system

enhancements.

As stated earlier, different models exist for different

kinds of projects. Each emphasizes different aspects of the

software life-cycle, and in many cases more than one type of

model is combined to allow the development of a model

specifically tailored to the project at hand. The most

18

important idea to be captured is the need for a life-cycle

model. Such a model should encompass all the activities

required to define, develop, test, deliver, operate, and

maintain a software product. Many models recommend specific

documents be produced at different phases to contain the

documentation suqqested for that phase. No sinqle model is

appropriate for all software products. However dufininq a

model early on in the product development and identifyinq

the planned documents to be produced is essential to the

product's success.

The next section will view some recommended documents

and the documentation contained in these documents as a

function of the life-cycle phases.

B. DOCUMENTATION WITHIN THE SOFTWARE LIFE-CYCLE

Computer proqrams evolve in phases from the time that an

idea to create or modify software occurs throuqh the time

that the software enqineerinq process produces the required

output. Usinq the terminoloqy defined in the National Bureau

of Standards Federal Information Processinq Standards (NBS

FIPS) publications [Ref. 33, the three major phases of the

software project are: the initiation phase, the development

phase, and the operation phase. The three phases, alonq with

their associated sub-phases and suqqested documentation

documents are shown in Fiqure 3. This thesis is concerned

19

• .-.-.-. ..-
*

with the suqqested documentation collected durinq these

phases.

INITIATION OPERATION
PHASE DEVELOPMENT PHASE PHASE

Definition Design Programminr Test
Stage Stage Stage Stage

PROJECT
REOUEST Functional System/ Users
DOCUMENT Requirements Subsystem Manual

Document Specification
FEA SIBILITY

STUDY Program Operations
DOCUMENT Specification Manual

[DNta Data Base Program
COST/SENEFIT cRquircnm.nts Specification Maintenance

ANALYSIS Document Manual
DOCUMENT

Test Plan "'pt Analysis
_Report

Fiqure 3. Documentation Within the Software Life-cycle [Ref.
3 :p. 6)

ProJect Request Document. The purpose of this document

is to provide the means for a user orqanization to request

the development, procurement, or modification of software.

It serves as the initiatinq document in the software life-

cycle, and provides a basis for communication with the

requestinq orqanization to further analyze requirements and

assess impacts. This document is quite often embedded in

another document as a part of a larqer system.

2.')

N .'-

Feasibility Study Document. The purpose of the

feasibility study document is to provide: (1) an analysis of

objectives, requirements and concepts; (2) to evaluate

alternative approaches; and (3) to identify the proposed

solution and the justifyinq arquments that make this the

most attractive alternative . This document, combined with

the cost/benefit analysis document, should provide

manaqement with the required information to make an informed

decision on whether or not to continue the project.

Cost/Benefit Analysis. The purpose of this document is

to provide manaqers, users, desiqners, and auditors with

adequate cost and benefit information to analyze different

alternatives from the standpoint of the cost and benefit

tradeoffs.

Functional Requirements Document. The purpose of this

document is to provide a basis for a mutual understandinq

between all concerned parties about the results of the

initial definition staqe of the software, includinq the

requirements, operatinq environment, and development plan.

Data Requirements Document. The purpose of this document

is to provide, durinq the definition staqe, a data

description and technical information about data collection

requirements.

System/Subsystem Specification. The purpose of this

document is to specify for analysts and proqrammers the

requirements, operatinq environment, desiqn characteristics,

"21

and proqram specifications (if desired) for a

system/subsystem.

Program Specification. The purpose of this document is

to specify for proqrammers the requirements, operatinq

environment, and desiqn characteristics of the computer

proqram.

Data Base Specification. The purpose of this document is

to specify the identification, loqical characteristics, and

physical characteristics of a particular database.

User's Manual. The purpose of this document is to

sufficiently describe the functions performed by the

software in a fashion that all users of the system miqht be

able to understand (that is it uses non-ADP terminoloqy).

Operations Manual. The purpose of this document is to

provide computer operations personnel with a description of

the software and of the operational evironment so that the

software may be run properly.

SProqram Maintenance Manual. The purpose of this manual

is to provide the maintenance proqrammer with the

information necessary to understand the proqrams, their

operatinq environment, and their maintenance procedures.

This includes a listing of the code or instructions on how

to obtain a listinq.

Test Plan. The purpose of this document is to provide a

plan for the testinq of software; detailed specifications,

22

.. - ...---- '.. .-.-. -'...-.. ...2-- .Y.-; " - - - .- --.--..

descriptions, and procedures for all tests; and test data

reduction and evaluation criteria.

Test Analysis Report. The purpose of this dccument is

to record and analyze test results and findinqs.

Deficiencies and capabilities are presented for review and

provide a basis to determine software readiness for

implementation.

The next section will describe the reasoninq behind

recommendinq all these documents and the documentation

contained within them.

C. TECHNICAL DOCUMENTATION GOALS

The purpose of qood technical documentation, that

documentation which deals with for example, proqram

requirements, proqram desiqn, interfaces, data requirements,

alqorithms, structures, etc., can be summarized in one

phrase; to accommodate chanqe at a reasonable cost.

Furthermore the documents which contain this documentation

provide definitive work products to be produced in each

phase of the life-cycle. If a project were to meet all of

its requirements and specifications durinq the testinq

phase, to maintain the same individuals throuqhout, and to

face a completely static environment for its entire life-

cycle, then documentation on how it performed its functions

would be absolutely worthless after completion of the

project except to the curious. However this is most always

23

" " . .. " . "-"..". *. "'"""- """ -.- °.*' '- """
*

" ." ""
° "

"" '" ' " - " '- * *".°"''"*. '"* "" .

never the case. The foreword to DOD-STD-1679A (Navy) [Ref.

4:p. iii] states three major factors in the desiqn and

documentation of Navy tactical proqrams. These are:

Criticality of Performance. The combat capability of
defense systems and the combat survivability of combatant
units of the operatinq forces depend, in part, upon the

effective operation of the software. Therefore, careful,
persistent manaqement must be exercised in the software
development phase to ensure maximum reliability and
maintainability.

Changing Operational Requirement. Software implements

system operations and doctrine in areas susceptible to
many chanqes of performance requirements and

specifications. These chanqes often impact the software
and need expeditious implementation. This demands that
software be desiqned to facilitate efficient chanqe,
sometimes at the expense of technical desiqn efficiency.
Desiqners must continously consider the tradeoffs between
future modifiability of the product and desiqn efficiency
as the requirements now exist. Continuation of an
efficient chanqe capability over the operational life of

the system also requires detailed documentation
describinq the system and the software. Proposed chanqes
and their total impact must be easily discernible and
must be capable of beinq implemented by personnel not
associated with the oriqinal development effort.

Life-cycle Cost. Development and implementation of
chanqes to the software over the operational life of the
system are costly. The desiqn of the software durinq
development must be stronqly influenced by factors which
will reduce life-cycle costs.

That the underlyinq qoal of any documentation is to

provide communication of the characteristics of a system and

the processes used in developinq the system independant of

individuals, is apparent from the foreword to DOD-STD-1679A

(Navy) and other publications. Technical documentation must

anticipate chanqe in the proqrams. Enouqh information,

through flowcharts, listinqs, data dictionaries, etc., must

2 4

be available to persons not associated with the oriqinal

desiqn qroup to allow them to develop an understandinq of

what the proqram does and how it does it.

The next section will discuss the Navy's methods for

providinq this technical documentation as prescribed by DOD-

STD-1679A(Navy) and interpreted by the DDG-51 Combat System

Software Development Project.

--

..°=.....

III. NAVY TECHNICAL DOCUMENTATION

As is made apparent in the previous sections, excellent

documentation is an important portion of any software

project. This requirement holds true for Navy software

projects as well where a major consideration of the project

is to plan for chanqe. This section presents a description

of the navy tactical software life-cycle as described in

DOD-STD-1679A(Navy) and presents the planned documentation

in an example Navy software project by describinq the

planned documents to be produced in each phase of the

life-cycle.

A. THE NAVY TACTICAL SOFTWARE LIFE-CYCLE

"The software challenqe is to control the desiqn process

for a complex of operational computer proqrams so that the

resultinq products can be inteqrated into a reliable,

maintainable, and survivable combat system fully responsive

to the mission requirements" [Ref. 5]. This is the openinq

paraqraph to the DDG-51 Computer Proqram Development Plan.

It is like the challenqe of any major software undertakinq,

with the exception that the possibility of further chanqe,

modifications, and enhancements is much qreater, and that

the software project, beinq a qovernmental project, will

always be under close scrutiny. The Navy tactical software

26
....................................

life-cycle is very much like the phased life-cycle described

earlier with staqes very similiar to those described in NBS

FIPS Publications 38 and 64. Usinq the Aeqis Shipbuildinq

Proqram, DDG 51 Computer Proqram Development Plan, as an

example of the typical tactical software development plan,

one can see in Fiqure 4 the five phases described in the

development plan.

- System Definition and Design Phase&. This is a
predecessor phase in which the functional baseline is
established in the A level specification, which is a
formalization of the top level requirements of the
system. And the first level of the allocated baseline is
created and recorded in the element B1 specification,
which is the breakdown of the A level specification into
loqical elements such as the radar element

- Computer Program Definition and Design Phase. This phase
encompasses the definition of the computer proqram
performance requirements, the establishment of interface
requirements, and the specification of the software top
-level desiqn. The performance requirements, documented
in the Proqram Performance Specification (PPS), are the
drivinq force for every subsequent phase of the computer
proqram development process from desiqn throuqh testinq
and delivery.The requirements incorporated in this
document, alonq with preliminary interface definitions
and early top level software desiqn considerations, are
reviewed by the Navy at the Preliminary Desiqn Review
(PDR) which serves to present the PPS for approval as
the preliminary allocated baseline for further
development. Based on the approved PPS, the finalized
interface requirements and the top-level proQram desiqn
are developed and documented, respectively, in the
Interface Desiqn Specification (IDS) and the Proqram
Desiqn Specification (PDS). The Critical Desiqn Review

'The DDG-51 software project is a Naval Sea Systems
Command project. However, the vast majority of the project
is performed throuqh a contract with RCA and various
subcontractors. Some Navy projects are developed totally
"in-house", however the normal procedure is to issue
contracts for the actual software development.

27

- . - . .7

- £j

4

00

ai

c >,

o --2 2 4 4-'

cc

I -ca>

-- 4-,

c.- 0

22

L

(CDR) provides the mechanism for Navy review and
approval of these documents. This completes the desiqn
phase of computer proqram development process, and these
documents serve as the approved final allocated baseline
for further development.

Computer Program Implementation Phase. The computer
proqram implementation phase is based on the approved
documents and specifications produced in the desiqn
phase. The implementation phase encompasses the detailed
desiqn of the proqram modules and data basle as well as
the codinq and debuqqinq of these items. The proqram
module loqical desiqns and the detailed data base
desiqns are developed and documented, respectively, in
preliminary Proqram Description Documents (PDDs) and the
Data Base Desiqn Documents (DBD). These documents are
reviewed at Informal Desiqn Reviews, in which the Navy
participates, and which serves to provide approval of
the detailed desiqn and authorization to proceed with
codinq. Once codinq is completed and error free compiles
of the modules and data base are achieved, an internal
structured walk-throuqh of the implemented code is
undertaken to assure compliance with desiQn
requirements. Successful completion of this structured
walk-throuqh serves to release the modules and the data
base for testinq. This completes the implementation
phase.

- Computer Program Testing Phase. Computer Proqram
development te stinq is performed within the context of
the top-down approach to development. TestinQ starts
with the smallest operatinq components; i.e., modules,
and develops throuqh successively more complex and
inclusive staqes. Modules are inteqrated into subproqram
builds, which are operational subsets of the complete
computer proqram. Build tests are performed with Navy
participation. Functional capabilities are added to the
subproqram builds, and, in the last staqe, the final
build is tested as a complete computer proqram. Test
plans, test procedures, and test reports are prepared at
all levels of testinq, beqinninq with the module unit
testinq. The Computer Proqram Qualification Test,
conducted at the developer computer proqram test
facility and performed to Navy approved test procedures,
is the final test of the computer proqram as a
standalone entity. The successful accomplishment of this
test marks the completion of the software development
phase. Subsequent activity is in support of element and
system level inteqration and testinq. A preliminary
product baseline is established at the completion of the
software testinq phase.

29

